Guide

Building a Robust pSEO Data Pipeline

A practical guide to building data pipelines that scale from 100 to 100,000 pages without breaking.

Building a Robust pSEO Data Pipeline

Overview

Your programmatic SEO site is only as good as your data. This guide covers how to build a data pipeline that's reliable, scalable, and maintainable.

Pipeline Architecture

Core Components

  1. Data Sources: APIs, scrapers, manual inputs
  2. Ingestion Layer: Collection and normalization
  3. Storage: Database with proper indexing
  4. Processing: Enrichment, validation, deduplication
  5. Output: API for your frontend/SSG

Recommended Architecture

Sources → Ingestion (Airflow/Cron) → PostgreSQL → Validation → API → SSG Build

Step 1: Data Ingestion

API Ingestion

  • Use rate limiting to respect API limits
  • Implement exponential backoff for failures
  • Log all requests for debugging
  • Cache responses to reduce API calls

Web Scraping

  • Respect robots.txt and rate limits
  • Use rotating proxies for scale
  • Handle dynamic content (Playwright/Puppeteer)
  • Monitor for structure changes

Step 2: Data Storage

Schema Design

  • Normalize for consistency
  • Index columns used in queries
  • Use JSONB for flexible attributes
  • Track updated_at for freshness

Example Schema

CREATE TABLE entities (
  id SERIAL PRIMARY KEY,
  slug VARCHAR(255) UNIQUE NOT NULL,
  name VARCHAR(255) NOT NULL,
  category_id INTEGER REFERENCES categories(id),
  attributes JSONB,
  status VARCHAR(50) DEFAULT 'draft',
  created_at TIMESTAMP DEFAULT NOW(),
  updated_at TIMESTAMP DEFAULT NOW()
);

Step 3: Data Validation

Validation Rules

  • Completeness: Required fields present
  • Format: URLs valid, dates parseable
  • Business logic: Prices positive, ratings 1-5
  • Uniqueness: No duplicate entities

Quality Monitoring

  • Set up alerts for validation failure spikes
  • Track data freshness per source
  • Monitor for duplicate content
  • Regular audits of sample pages

Step 4: Automation

Scheduling

  • High-frequency data: Hourly updates
  • Moderate: Daily updates
  • Static data: Weekly/monthly

Tools

  • Simple: Cron jobs
  • Medium: GitHub Actions
  • Complex: Apache Airflow, Dagster

Step 5: Monitoring

Key Metrics

  • Pipeline success rate
  • Data freshness (time since last update)
  • Entity coverage (% with complete data)
  • Error rates by source

More Templates